预测北京和伦敦两个城市的空气质量

源代码分享

方案一思路:

想着一步步来,先只用空气污染数据本身,把它当作时间序列建立自回归模型,用前面时间步长的观测预测后面的,并把时间本身也作为一个协变,(包括星期几、小时等明显的周期,也可以通过傅立叶变换发现隐藏的周期)

然后逐步加入比赛提供的气象数据作为协变量,用类似于逐步回归的方法来需找最优模型

更复杂的考虑就要考虑污染物的传输:包括识别污染源、用风向风速等估计污染物的扩散等。这一部分比较难。

要从单点的模型发展到考虑整个区域的时空变化的全局模型

还要结合大气污染的过程模型的结果,采取类似于资料同化的方法来进行

方案二思路:

  1. 数据预处理(主要是缺失值处理,如果连续缺失少于三个则线性填补,否则用3*24个连续值预测下一个值的预训练模型(pre_train.py)填充),采用一天的滑动窗口来增加数据
  2. 主要模型
    • 1) lightgbm为主要模型,每次预测一个值预测48次,ld和bj的5个预测值分别训练5个模型,所有站点一起训练
    • 2)lightgbm 对特征数据进行log处理预测
  3. 主要特征
    • 1)用前21天数据预测后两天的值,包括原始值,max,min,median等统计量,同时包含天,周等为单位的统计量
    • 3)天气特征,主要使用网格数据,附近一个站点的数据,这里只用了温度,湿度和气压数据
    • 4)天气预报,通过自己抓取得到,见crawl_data.py文件以及官方给定api数据
    • 5)是否周末,是否工作日,是否工作日第一天,最后一天,是否放假第一天,是否放假最后一天
    • 6)初预测指标以外的特征,比如预测PM25时,加入PM10的特征,发现只加入最后3-4天的数据比较好
  4. 模型结果融合
    • 1)用不同的参数来训练
    • 2)用不同的数据来训练,通过控制时间范围和数据缺失的多少来获得不同的训练数据
    • 3)对获得结果进行简单mean或者median以及加权求和
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import os
import time
import pickle
import hashlib
import requests
import datetime
import numpy as np
import pandas as pd
from tqdm import tqdm
import lightgbm as lgb
from io import StringIO
from dateutil.parser import parse
from datetime import date, timedelta
from sklearn.preprocessing import LabelEncoder

inplace = False
cache_path = '../cache/'
data_path = '../data/'
station_dict = pd.read_csv('../data/station_dict.csv')

##########################################基础工具包#######################################
# 日期的加减
def date_add_days(start_date, days):
end_date = parse(start_date[:10]) + timedelta(days=days)
end_date = end_date.strftime('%Y-%m-%d')
return end_date
# 日期的加减
def date_add_hours(start_date, hours):
end_date = parse(start_date) + timedelta(hours=hours)
end_date = end_date.strftime('%Y-%m-%d %H:%M:%S')
return end_date
# 压缩数据降低精度
def convert_dtypes(data,predictors,slient=False):
for c in predictors:
if data[c].dtypes == 'O':
try:
data[c] = data[c].astype('float32')
except:
if not slient:
print('特征{}格式无法转换'.format(c))
if data[c].dtypes == 'float64':
data[c] = data[c].astype('float32')
return data

##########################################aq数据更新#######################################
def up_date():

# 北京aq数据(起始时间2018-03-31-16)
url = 'https://biendata.com/competition/airquality/bj/2018-03-31-16/2018-06-11-23/2k0d1d8'
# url = 'http://kdd.caiyunapp.com/competition/2k0d1d8/bj/2018-03-31-16/2018-06-11-23/airquality'
respones= requests.get(url)
with open (data_path + "bj_aq+.csv",'w') as f:
f.write(respones.text)

# 伦敦aq数据(起始时间2018-03-31-16)
url = 'https://biendata.com/competition/airquality/ld/2018-03-31-16/2018-06-11-23/2k0d1d8'
# url = 'http://kdd.caiyunapp.com/competition/2k0d1d8/ld/2018-03-31-16/2018-06-11-23/airquality'
respones= requests.get(url)
with open (data_path + "ld_aq+.csv",'w') as f:
f.write(respones.text)


bj_aq_more = pd.read_csv(data_path + 'bj_aq_more.csv')
bj_aq_1718 = pd.read_csv(data_path + 'beijing_17_18_aq.csv')
bj_aq_0203 = pd.read_csv(data_path + 'beijing_201802_201803_aq.csv')

ld_aq = pd.read_csv(data_path + 'London_historical_aqi_forecast_stations_20180331.csv',index_col=0)
ld_other = pd.read_csv(data_path + 'London_historical_aqi_other_stations_20180331.csv')


bj_aq = bj_aq_1718.append(bj_aq_0203).append(bj_aq_more)
del bj_aq_1718,bj_aq_0203,bj_aq_more
bj_aq.rename(columns={'stationId':'station_id','utc_time':'time'},inplace=True)
ld_aq.rename(columns={'MeasurementDateGMT':'time','PM2.5 (ug/m3)':'PM2.5','PM10 (ug/m3)':'PM10','NO2 (ug/m3)':'NO2'},inplace=True)
ld_aq['time'] = pd.to_datetime(ld_aq['time']).astype(str)
ld_aq_more = pd.read_csv(data_path+'ld_aq_more.csv')
ld_aq_more['time'] = pd.to_datetime(ld_aq_more['time']).astype(str)
ld_other.rename(columns={'MeasurementDateGMT':'time','PM2.5 (ug/m3)':'PM2.5','PM10 (ug/m3)':'PM10','NO2 (ug/m3)':'NO2','Station_ID':'station_id'},inplace=True)
ld_other.drop(['Unnamed: 5','Unnamed: 6'],axis=1,inplace=True)
ld_other['time'] = pd.to_datetime(ld_other['time']).astype(str)
ld_aq = ld_aq.append(ld_other).append(ld_aq_more)

bj_aq1 = pd.read_csv(data_path + 'bj_aq+.csv')
ld_aq1 = pd.read_csv(data_path + 'ld_aq+.csv')

del bj_aq1['id']
bj_aq1.rename(columns={'PM25_Concentration':'PM2.5','PM10_Concentration':'PM10','NO2_Concentration':'NO2',
'CO_Concentration':'CO','O3_Concentration':'O3','SO2_Concentration':'SO2'},inplace=True)
bj_aq = bj_aq.append(bj_aq1)
bj_aq['station_id'] = bj_aq['station_id'].str[:-3]
del bj_aq1


ld_aq1.drop(['id','CO_Concentration','O3_Concentration','SO2_Concentration'],axis=1,inplace=True)
ld_aq1.rename(columns={'NO2_Concentration':'NO2','PM25_Concentration':'PM2.5','PM10_Concentration':'PM10'},inplace=True)
ld_aq = ld_aq.append(ld_aq1)



aq = bj_aq.append(ld_aq).drop_duplicates(['station_id','time'])
aq = aq[~aq['station_id'].isnull()]
aq.to_hdf(data_path+'aq.hdf','w', complib='blosc', complevel=5)


print('更新完毕....')



##########################################grid数据更新(更新天气预报)#######################################
# 更新api grid数据
def update_meo_grid():

dates = [str(date)[:10] for date in pd.date_range('2018-04-07','2018-06-05')]
for date in dates:
if date > time.strftime("%Y-%m-%d", time.gmtime()):
continue
result_path = data_path + "meo_grid_{}.csv".format(date)
if not os.path.exists(result_path):
# 北京meo_grid数据(起始时间2018-04-09-22)
url = 'http://kdd.caiyunapp.com/competition/forecast/bj/{}-22/2k0d1d8'.format(date)
respones = requests.get(url)
if respones.text == 'None':
print('北京{}的数据api不存在'.format(date))
else:
bj_result = pd.read_csv(StringIO(respones.text))
bj_result.drop(['id', 'weather'], axis=1, inplace=True)
bj_result.rename(columns={'station_id': 'station_name', 'forecast_time': 'time'}, inplace=True)
bj_result = station_dict.merge(bj_result, on='station_name', how='inner')
del bj_result['station_name']
# result.to_csv(result_path, index=False)
print('正在更新北京{}的数据...'.format(date))

# 伦敦meo_grid数据(起始时间2018-04-09-22)
url = 'http://kdd.caiyunapp.com/competition/forecast/ld/{}-22/2k0d1d8'.format(date)
respones = requests.get(url)
if respones.text == 'None':
print('伦敦{}的数据api不存在'.format(date))
else:
ld_result = pd.read_csv(StringIO(respones.text))
ld_result.drop(['id', 'weather'], axis=1, inplace=True)
ld_result.rename(columns={'station_id': 'station_name', 'forecast_time': 'time'}, inplace=True)
ld_result = station_dict.merge(ld_result, on='station_name', how='inner')
del ld_result['station_name']
# result.to_csv(result_path,index=False)
print('正在更新伦敦{}的数据...'.format(date))
result = pd.concat([bj_result, ld_result])
if (date > '2018-04-07') & (date < '2018-04-23'):
temp = result['wind_direction']
result['wind_direction'] = result['wind_speed']
result['wind_speed'] = temp
result.to_csv(result_path, index=False)
else:
print('{}的数据已存在'.format(date))

# 更新历史grid数据
def update_meo_grid2():
bj_meo_grid = pd.read_hdf(data_path + 'bj_meo_grid.hdf')
ld_meo_grid = pd.read_hdf(data_path + 'ld_meo_grid.hdf')

bj_meo_grid.drop(['latitude', 'longitude', 'weather'], axis=1, inplace=True)
ld_meo_grid.drop(['latitude', 'longitude', 'weather'], axis=1, inplace=True)
dates = [str(date)[:10] for date in pd.date_range('2017-01-01','2018-04-01')]
for date in dates:
start_time = date_add_hours(date, 0)[:10] + ' 23:00:00'
end_time = date_add_hours(date, 48)[:10] + ' 23:00:00'
result_path = data_path + "meo_grid_{}.csv".format(date)
if not os.path.exists(result_path):
try:
bj_result = bj_meo_grid[(bj_meo_grid['time']>=start_time) & (bj_meo_grid['time']<end_time)].copy()
bj_result = station_dict.merge(bj_result, on='station_name', how='inner')
del bj_result['station_name']
print('正在更新北京{}的数据...'.format(date))
except:
print('北京{}的数据更新失败'.format(date))
try:
ld_result = ld_meo_grid[(ld_meo_grid['time']>=start_time) & (ld_meo_grid['time']<end_time)].copy()
ld_result = station_dict.merge(ld_result, on='station_name', how='inner')
del ld_result['station_name']
print('正在更新伦敦{}的数据...'.format(date))
except:
print('伦敦{}的数据更新失败'.format(date))
result = pd.concat([bj_result, ld_result])
result.to_csv(result_path, index=False)
else:
print('{}的数据已存在'.format(date))





aq = pd.read_hdf(data_path+'aq.hdf')
temp = aq[['CO', 'NO2', 'O3', 'PM10', 'PM2.5', 'SO2']].copy()
temp[temp<0] = np.nan
aq[['CO', 'NO2', 'O3', 'PM10', 'PM2.5', 'SO2']] = temp
aq2 = aq.copy()
aq[['CO', 'NO2', 'O3', 'PM10', 'PM2.5', 'SO2']] = np.log(aq[['CO', 'NO2', 'O3', 'PM10', 'PM2.5', 'SO2']]+100)

station_info = pd.read_csv(data_path+'station_info.csv')
station_info['sitetype'] = LabelEncoder().fit_transform(station_info['sitetype'])
holidays = pd.read_csv(data_path + 'holidays.csv')
aq = aq.merge(station_info[['station_id','sitetype','city']],on='station_id',how='left')
aq['hour'] = pd.to_datetime(aq['time']).dt.hour
aq['date'] = aq['time'].str[:10]


bj_station_id = ['aotizhongxin', 'badaling', 'beibuxinqu', 'daxing', 'dingling',
'donggaocun', 'dongsi', 'dongsihuan', 'fangshan', 'fengtaihuayuan',
'guanyuan', 'gucheng', 'huairou', 'liulihe', 'mentougou', 'miyun',
'miyunshuiku', 'nansanhuan', 'nongzhanguan', 'pingchang', 'pinggu',
'qianmen', 'shunyi', 'tiantan', 'tongzhou', 'wanliu',
'wanshouxigong', 'xizhimenbei', 'yanqin', 'yizhuang',
'yongdingmennei', 'yongledian', 'yufa', 'yungang', 'zhiwuyuan']
ld_station_id = ['CD1', 'BL0', 'GR4', 'MY7', 'HV1', 'GN3', 'GR9', 'LW2', 'GN0',
'KF1', 'CD9', 'ST5', 'TH4', 'LH0', 'HR1', 'TD5', 'CT3', 'GB0',
'CR8', 'RB7', 'BX1', 'BX9', 'KC1', 'CT2']
station_id = ['aotizhongxin', 'badaling', 'beibuxinqu', 'daxing', 'dingling',
'donggaocun', 'dongsi', 'dongsihuan', 'fangshan', 'fengtaihuayuan',
'guanyuan', 'gucheng', 'huairou', 'liulihe', 'mentougou', 'miyun',
'miyunshuiku', 'nansanhuan', 'nongzhanguan', 'pingchang', 'pinggu',
'qianmen', 'shunyi', 'tiantan', 'tongzhou', 'wanliu',
'wanshouxigong', 'xizhimenbei', 'yanqin', 'yizhuang',
'yongdingmennei', 'yongledian', 'yufa', 'yungang', 'zhiwuyuan',
'CD1', 'BL0', 'GR4', 'MY7', 'HV1', 'GN3', 'GR9', 'LW2', 'GN0',
'KF1', 'CD9', 'ST5', 'TH4', 'LH0', 'HR1', 'TD5', 'CT3', 'GB0',
'CR8', 'RB7', 'BX1', 'BX9', 'KC1', 'CT2'
]
stationName = ['beijing_grid_303', 'beijing_grid_303', 'beijing_grid_282', 'beijing_grid_303', 'beijing_grid_304',
'beijing_grid_324', 'beijing_grid_283', 'beijing_grid_263', 'beijing_grid_262', 'beijing_grid_282', 'beijing_grid_239',
'beijing_grid_261', 'beijing_grid_238','beijing_grid_301','beijing_grid_323','beijing_grid_366', 'beijing_grid_368',
'beijing_grid_264', 'beijing_grid_240', 'beijing_grid_452', 'beijing_grid_349', 'beijing_grid_392', 'beijing_grid_225',
'beijing_grid_265', 'beijing_grid_224', 'beijing_grid_414', 'beijing_grid_452', 'beijing_grid_385', 'beijing_grid_278',
'beijing_grid_216', 'beijing_grid_303', 'beijing_grid_303', 'beijing_grid_283', 'beijing_grid_303', 'beijing_grid_324',
'london_grid_472', 'london_grid_472', 'london_grid_409', 'london_grid_409', 'london_grid_388', 'london_grid_409',
'london_grid_409', 'london_grid_408', 'london_grid_451', 'london_grid_451', 'london_grid_451', 'london_grid_430',
'london_grid_451', 'london_grid_368', 'london_grid_472', 'london_grid_346', 'london_grid_388', 'london_grid_388',
'london_grid_430', 'london_grid_452', 'london_grid_366', 'london_grid_408', 'london_grid_430', 'london_grid_388']

############################### 工具函数 ###########################
# 合并节约内存
def concat(L):
result = None
for l in L:
if result is None:
result = l
else:
result[l.columns.tolist()] = l
return result
# groupby 直接拼接
def groupby(data,stat,key,value,func):
key = key if type(key)==list else [key]
data_temp = data[key].copy()
feat = stat.groupby(key,as_index=False)[value].agg({'feat':func})
data_temp = data_temp.merge(feat,on=key,how='left')
return data_temp['feat'].values
# 相差的小时数
def diff_of_hours(time1,time2):
hours = (parse(time1) - parse(time2)).total_seconds()//3600
return abs(hours)
############################### 预处理函数 ###########################
def pre_treatment(data_key):
result_path = cache_path + 'data_{}.hdf'.format(data_key)
if os.path.exists(result_path) & 1:
data = pd.read_hdf(result_path, 'w')
else:
times = pd.date_range(data_key,date_add_days(data_key,2),freq='H')[:-1]
data = pd.DataFrame(index=times,columns=station_id).unstack().reset_index().drop(0,axis=1)
data.columns = ['station_id','time']
data = data.merge(station_info, on='station_id', how='left')
data['hour'] = data['time'].dt.hour
data['month'] = data['time'].dt.month
data['year'] = data['time'].dt.year
data['day_of_week'] = data['time'].dt.dayofweek
data['day_of_month'] = data['time'].dt.day
data['day_of_year'] = data['time'].dt.dayofyear
data['time'] = data['time'].astype(str)
data['date'] = data['time'].str[:10]
data['diff_of_hour'] = (data['date']!=data_key).astype(int)*24+data['hour']
data = data.merge(holidays,on='date',how='left')
data.reset_index(drop=True, inplace=True)
data.to_hdf(result_path, 'w', complib='blosc', complevel=5)
return data


############################### 预处理函数 ###########################
# 24个小时前的数据
def get_24hour_feat(data,data_key,replace):
result_path = cache_path + '24hour_feat_{}_{}hours_ago.hdf'.format(data_key,1)
if os.path.exists(result_path) & (not replace):
feat = pd.read_hdf(result_path, 'w')
else:
start_time = date_add_hours(data_key, -25)
end_time1 = date_add_hours(data_key, -1)
end_time0 = date_add_hours(data_key, -2)
bj_aq = aq[(aq['city']==1) & (aq['time'] < end_time1) & (aq['time'] >= start_time)].copy()
ld_aq = aq[(aq['city'] == 0) & (aq['time'] < end_time0) & (aq['time'] >= start_time)].copy()
data_temp = bj_aq.append(ld_aq)
feat = data[['station_id','city','sitetype']].copy()
for label in ['PM2.5','PM10','O3']:
result_temp = data_temp.set_index(['station_id', 'time'])[label].unstack()
result_temp.columns = ['{}_{}hour_last'.format(label,c[11:13]) for c in result_temp.columns]
feat = feat.merge(result_temp.reset_index(),on='station_id',how='left')
for label in ['PM2.5','PM10','O3']:
result_temp = data_temp.groupby(['city', 'time'])[label].mean().unstack()
result_temp.columns = ['{}_{}hour_last_city'.format(label,c[11:13]) for c in result_temp.columns]
feat = feat.merge(result_temp.reset_index(),on='city',how='left')
# for label in ['PM2.5','PM10','O3']:
# result_temp = data_temp.groupby(['sitetype', 'time'])[label].mean().unstack()
# result_temp.columns = ['{}_{}hour_last_sitetype'.format(label,c[11:13]) for c in result_temp.columns]
# feat = feat.merge(result_temp.reset_index(),on='sitetype',how='left')
feat.to_hdf(result_path, 'w', complib='blosc', complevel=5)
return feat

# 一个月内对应小时的值
def get_nday_mean_feat(data,data_key,n,replace):
result_path = cache_path + '{}day_mean_feat{}_{}hours_age.hdf'.format(n,data_key,1)
if os.path.exists(result_path) & (not replace):
feat = pd.read_hdf(result_path, 'w')
else:
start_time = date_add_hours(data_key, -1-24*n)
end_time = date_add_hours(data_key, -1)
data_temp = aq[(aq['time']<end_time) & (aq['time']>=start_time)]
feat = data[['station_id','hour','date','city']].copy()
for label in ['PM2.5','PM10','O3']:
# feat['{}day_{}_mean'.format(n,label)] = groupby(feat,data_temp,['station_id'],label,np.mean)
# feat['{}day_{}_std'.format(n,label)] = groupby(feat, data_temp, ['station_id'], label, np.std)
feat['{}day_hour_{}_mean'.format(n,label)] = groupby(feat, data_temp, ['station_id','hour'], label, np.mean)
for label in ['PM2.5','PM10','O3']:
# feat['{}day_{}_mean_city'.format(n,label)] = groupby(feat,data_temp,['station_id'],label,np.mean)
# feat['{}day_{}_std_city'.format(n,label)] = groupby(feat, data_temp, ['station_id'], label, np.std)
feat['{}day_{}_mean_city'.format(n,label)] = groupby(feat, data_temp, ['city','date'], label, np.mean)
for label in ['PM2.5','PM10','O3']:
# feat['{}day_{}_mean_city'.format(n,label)] = groupby(feat,data_temp,['station_id'],label,np.mean)
# feat['{}day_{}_std_city'.format(n,label)] = groupby(feat, data_temp, ['station_id'], label, np.std)
feat['{}day_hour_{}_mean_city'.format(n,label)] = groupby(feat, data_temp, ['city','hour'], label, np.mean)
feat.to_hdf(result_path, 'w', complib='blosc', complevel=5)
return feat

# 天气特征
def get_weather_feat(data,data_key,replace):
result_path = cache_path + 'weather_feat{}.hdf'.format(data_key)
if os.path.exists(result_path) & (not replace):
feat = pd.read_hdf(result_path, 'w')
else:
data_temp = data[['station_id','time']].copy()
end_time = date_add_hours(data_key, -2)
try:
weather = pd.read_csv(r'C:\Users\csw\Desktop\python\kdd\data\meo_grid_api\meo_grid_{}.csv'.format(end_time[:10]))
date_time = data_temp['time'].copy()
feat_columns = weather.columns.copy()
for i in [-18,-12,-6,-4,-3,-2,-1,0,1,2,3]:
weather.columns = [c+'_ahead{}'.format(i) if c not in ['station_id','time'] else c for c in feat_columns]
data_temp['time'] = date_time.apply(lambda x: date_add_hours(x,i))
data_temp = data_temp.merge(weather,on=['station_id','time'],how='left')
data_temp['temperature_diff_1'] = data_temp['temperature_ahead0'] - data_temp['temperature_ahead-1']
data_temp['temperature_diff_2'] = data_temp['temperature_ahead0'] - data_temp['temperature_ahead-2']
data_temp['temperature_diff_21'] = data_temp['temperature_ahead-1'] - data_temp['temperature_ahead-2']
data_temp['temperature_diff_3'] = data_temp['temperature_ahead0'] - data_temp['temperature_ahead-3']
data_temp['temperature_diff_31'] = data_temp['temperature_ahead-2'] - data_temp['temperature_ahead-3']
data_temp['humidity_diff_1'] = (data_temp['humidity_ahead0'] - data_temp['humidity_ahead-1'])/data_temp['humidity_ahead0']
feat = data_temp.drop(['station_id','time'],axis=1)
except:
feat = pd.DataFrame()
print('{}的天气数据为空。'.format(end_time[:10]))
feat.to_hdf(result_path, 'w', complib='blosc', complevel=5)
return feat

# 添加标签
def get_label(result):
return result.merge(aq2[['station_id','time','PM2.5','PM10','O3']],on=['station_id','time'],how='left')

# 二次处理特征
def second_feat(result):
try:
result['PM2.5_22hour_last_city/PM2.5_21hour_last_city_rate'] = result['PM2.5_22hour_last_city'] / result['PM2.5_21hour_last_city']
result['PM10_22hour_last_city/PM10_21hour_last_city_rate'] = result['PM10_22hour_last'] / result['PM10_21hour_last_city']
result['O3_22hour_last/O3_21hour_last_rate'] = result['O3_22hour_last_city'] / result['O3_21hour_last_city']
result['PM2.5_21hour_last/PM2.5_20hour_last_rate'] = result['PM2.5_21hour_last']/result['PM2.5_20hour_last']
result['PM10_21hour_last/PM10_20hour_last_rate'] = result['PM10_21hour_last'] / result['PM10_20hour_last']
result['O3_21hour_last/O3_20hour_last_rate'] = result['O3_21hour_last'] / result['O3_20hour_last']
result['30day_PM2.5_mean/60day_PM2.5_mean_rate'] = result['30day_PM2.5_mean_city'] / result['60day_PM2.5_mean_city']
result['30day_PM10_mean/60day_PM10_mean_rate'] = result['30day_PM10_mean_city'] / result['60day_PM10_mean_city']
result['30day_O3_mean/60day_O3_mean_rate'] = result['30day_O3_mean_city'] / result['60day_O3_mean_city']
result['3day_PM2.5_mean/7day_PM2.5_mean_rate'] = result['3day_PM2.5_mean_city'] / result['7day_PM2.5_mean_city']
result['3day_PM10_mean/7day_PM10_mean_rate'] = result['3day_PM10_mean_city'] / result['7day_PM10_mean_city']
result['3day_O3_mean/7day_O3_mean_rate'] = result['3day_O3_mean_city'] / result['7day_O3_mean_city']
result['1day_PM2.5_mean_city/2day_PM2.5_mean_city_rate'] = result['1day_PM2.5_mean_city'] / result['2day_PM2.5_mean_city']
result['1day_PM10_mean_city/2day_PM10_mean_city_rate'] = result['1day_PM10_mean_city'] / result['2day_PM10_mean_city']
result['1day_O3_mean_city/2day_O3_mean_city_rate'] = result['1day_O3_mean_city'] / result['2day_O3_mean_city']
except:
pass
return result


return result

def make_feat(data_key,silent=0,replace=False):
# data_key = hashlib.md5(data.to_string().encode()).hexdigest()
print(end='') if silent else print('数据key为:{}'.format(data_key))
result_path = cache_path + 'feat_set_{}_{}hour_ago.hdf'.format(data_key,1)
if os.path.exists(result_path) & (not replace):
result = pd.read_hdf(result_path, 'w')
else:
data = pre_treatment(data_key)

result = [data]
# print('开始构造特征...')
result.append(get_24hour_feat(data,data_key,replace)) # 24个小时前的数据
for i in [1,2,3,7,15,30,60,360]:
result.append(get_nday_mean_feat(data,data_key,i,replace)) # 一个月内对应小时的值
result.append(get_weather_feat(data, data_key,replace)) # 天气特征

# print('开始合并特征...')
result = concat(result)

result = second_feat(result)
# print('添加label')
result = get_label(result)
# print('存储数据...')
result = convert_dtypes(result, result.columns, slient=True)
result.to_hdf(result_path, 'w', complib='blosc', complevel=5)
print(end='') if silent else print('特征矩阵大小:{}'.format(result.shape))
# print('生成特征一共用时{}秒'.format(time.time() - t0))
return result


up_date()
update_meo_grid()
update_meo_grid2()


hours = 1
data_feat = []
start_date = '2018-05-05'
days = 400
data_feat_url = cache_path + 'data_feat_{}_{}days.hdf'.format(start_date,days)
if os.path.exists(data_feat_url):
data_feat = pd.read_hdf(data_feat_url, 'w')
else:
for i in tqdm(range(days)):
data_feat.append(make_feat(date_add_days(start_date, i*(-1))))
data_feat = pd.concat(data_feat,axis=0)
data_feat.to_hdf(data_feat_url, 'w', complib='blosc', complevel=5)

train_feat = data_feat[data_feat['time']<'2018-04-10 00:00:00']
eval_feat = data_feat[data_feat['time']>='2018-04-10 00:00:00']

# weather_columns = []
# for i in ['','','','','','']:

predictors = [c for c in train_feat.columns if c not in (['station_id', 'time','date', 'PM2.5', 'PM10', 'O3','city','duoyun', 'yangsha', 'qing', 'fuchen', 'yin', 'zhenyu', 'zhenxue',
'yujiaxue', 'wu', 'mai'])]
params = {
'learning_rate': 0.01,
'boosting_type': 'gbdt',
# 'objective': 'regression',
'application': 'mape',
'metric': 'map',
'sub_feature': 0.7,
'num_leaves': 60,
'min_data': 100,
'min_hessian': 1,
'verbose': -1,
}
model_dict = {}
def f1(x): return np.log(x+1)
def f2(x): return np.log(x+1)
def f3(x): return np.log(x+100)
def f4(x): return np.exp(x)-1
def f5(x): return np.exp(x)-1
def f6(x): return np.exp(x)-100
encode = {'PM2.5':f1,'PM10':f2,'O3':f3}
decode = {'PM2.5':f4,'PM10':f5,'O3':f6}
for label in ['PM2.5','PM10','O3']:
lgb_train = lgb.Dataset(train_feat[train_feat[label] > 0][predictors],encode[label](train_feat[train_feat[label] > 0][label]))
lgb_eval = lgb.Dataset(eval_feat[eval_feat[label] > 0][predictors], encode[label](eval_feat[eval_feat[label] > 0][label]))

gbm = lgb.train(params,
lgb_train,
num_boost_round=5000,
valid_sets=lgb_eval,
verbose_eval = 100,
early_stopping_rounds = 100)
feat_imp = pd.Series(gbm.feature_importance(), index=predictors).sort_values(ascending=False)
model_dict[label] = gbm

pickle.dump((model_dict,predictors),open(data_path+'lightgbm_weather_best_eval.model','wb+'))
model_dict,predictors = pickle.load(open(data_path+'lightgbm_weather_best_eval.model', 'rb+'))


print('生成测试集')
def get_test_feat(date):
test_feat = make_feat(date_add_days(date[:10],1),replace=True)
test_feat = pd.concat([train_feat[:0],test_feat])
return test_feat

print('生成预测结果')
def get_submission(test_feat,model_dict,decode):
for label in ['PM2.5', 'PM10', 'O3']:
pred = model_dict[label].predict(test_feat[predictors])
test_feat[label] = decode[label](pred)
test_feat['test_id'] = test_feat['station_id'].apply(lambda x: x if len(x)<11 else x[:10])
test_feat['test_id'] = list(map(lambda x,y: y if x==0 else y+'_aq', test_feat['city'],test_feat['test_id']))
test_feat['test_id'] = test_feat['test_id'] + '#' + test_feat['diff_of_hour'].astype(int).astype(str)
submission = pd.read_csv(data_path + 'sample_submissioin.csv')
submission = submission[['test_id']].merge(test_feat[['test_id','PM2.5','PM10','O3']],on='test_id',how='left')
if (submission[['PM2.5','PM10','O3']]<0).sum().sum()>0:
print('存在负数,请检查!!!')
return submission


hours = 1
utc_date = date_add_hours(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),-8)
print('现在是UTC时间:{}'.format(utc_date))
print('距离待预测时间还有{}个小时'.format(diff_of_hours(date_add_days(utc_date,1),utc_date)+1))

test_feat = get_test_feat(utc_date)
submission = get_submission(test_feat,model_dict, decode)

sub_url = r'../submission/sub{}.csv'.format(datetime.datetime.now().strftime('%Y%m%d_%H%M%S'))
submission.to_csv(sub_url,index=False, float_format='%.4f')
print(submission[['PM2.5','PM10','O3']].mean())


import requests
files={'files': open(sub_url,'rb')}
data = {
"user_id": "piupiu",
"team_token": "739a5c2029a031c0d0709ba0b7d438968a458b783420c4179f1ee1b8e7380d08",
"description": 'log1',
"filename": sub_url.split('\\')[-1],
}
url = 'https://biendata.com/competition/kdd_2018_submit/'
response = requests.post(url, files=files, data=data)
print(response.text)